Contents
  1. 1. 特点
  2. 2. 术语
    1. 2.1. Broker
    2. 2.2. Topic
    3. 2.3. Partition
    4. 2.4. Producer
    5. 2.5. Consumer
    6. 2.6. Consumer Group
  3. 3. 结构
  4. 4. Topic & Partition
  5. 5. Producer消息路由
  6. 6. Consumer Group
  7. 7. 传输保障

Kafka是由LinkedIn开发的一个分布式的消息系统,使用Scala编写,它以可水平扩展和高吞吐率而被广泛使用。目前越来越多的开源分布式处理系统如Cloudera、Apache Storm、Spark都支持与Kafka集成。

特点

Kafka是一种分布式的,基于发布/订阅的消息系统。主要设计目标如下:

  • 以时间复杂度为O(1)的方式提供消息持久化能力,即使对TB级以上数据也能保证常数时间复杂度的访问性能。
  • 高吞吐率。即使在非常廉价的商用机器上也能做到单机支持每秒100K条以上消息的传输。
  • 支持Kafka Server间的消息分区,及分布式消费,同时保证每个Partition内的消息顺序传输。
  • 同时支持离线数据处理和实时数据处理。
  • Scale out:支持在线水平扩展。
  • 完全的分布式系统,Broker、Producer、Consumer都原生自动支持分布式,自动实现负载均衡;
  • 支持Hadoop数据并行加载,对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案

    术语

    Broker

    Kafka集群包含一个或多个服务器,这种服务器被称为broker

Topic

每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)

Partition

Parition是物理上的概念,每个Topic包含一个或多个Partition.

Producer

负责发布消息到Kafka broker

Consumer

消息消费者,向Kafka broker读取消息的客户端。

Consumer Group

每个Consumer属于一个特定的Consumer Group(可为每个Consumer指定group name,若不指定group name则属于默认的group)。

结构


如上图所示,一个典型的Kafka集群中包含若干Producer(可以是web前端产生的Page View,或者是服务器日志,系统CPU、Memory等),若干broker(Kafka支持水平扩展,一般broker数量越多,集群吞吐率越高),若干Consumer Group,以及一个Zookeeper集群。Kafka通过Zookeeper管理集群配置,选举leader,以及在Consumer Group发生变化时进行rebalance。Producer使用push模式将消息发布到broker,Consumer使用pull模式从broker订阅并消费消息。

Topic & Partition

Topic在逻辑上可以被认为是一个queue,每条消费都必须指定它的Topic,可以简单理解为必须指明把这条消息放进哪个queue里。为了使得Kafka的吞吐率可以线性提高,物理上把Topic分成一个或多个Partition,每个Partition在物理上对应一个目录,该文件夹下存储这个Partition的所有消息和索引文件。若创建topic1和topic2两个topic,且分别有13个和19个分区,则整个集群上会相应会生成共32个目录.

每个日志文件都都包含大量log entry,每条消息都有一个当前Partition下唯一的64字节的offset,它指明了这条消息的起始位置,磁盘上存储的消息格式如下

1
2
3
4
message length : 4 bytes (value: 1+4+n)
"magic" value : 1 byte
crc : 4 bytes
payload : n bytes

每个日志文件以其第一个segment位移命名,一个segment包含多个消息(entry),这种顺序地磁盘写入速度甚至高于随机内存读写,也是Kafka高吞的保证。

对于传统的message queue而言,一般会删除已经被消费的消息,而Kafka集群会保留所有的消息,无论其被消费与否。当然,因为磁盘限制,不可能永久保留所有数据(实际上也没必要),因此Kafka提供两种策略删除旧数据。一是基于时间,二是基于Partition文件大小。例如可以通过配置$KAFKA_HOME/config/server.properties,让Kafka删除一周前的数据,也可在Partition文件超过1GB时删除旧数据,配置如下所示。

1
2
3
4
5
6
7
8
# The minimum age of a log file to be eligible for deletion
log.retention.hours=168
# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824
# The interval at which log segments are checked to see if they can be deleted according to the retention policies
log.retention.check.interval.ms=300000
# If log.cleaner.enable=true is set the cleaner will be enabled and individual logs can then be marked for log compaction.
log.cleaner.enable=false

这里要注意,因为Kafka读取特定消息的时间复杂度为O(1),即与文件大小无关,所以这里删除过期文件与提高Kafka性能无关。选择怎样的删除策略只与磁盘以及具体的需求有关。另外,Kafka会为每一个Consumer Group保留一些metadata信息——当前消费的消息的position,也即offset。这个offset由Consumer控制。正常情况下Consumer会在消费完一条消息后递增该offset。当然,Consumer也可将offset设成一个较小的值,重新消费一些消息。因为offet由Consumer控制,所以Kafka broker是无状态的,它不需要标记哪些消息被哪些消费过,也不需要通过broker去保证同一个Consumer Group只有一个Consumer能消费某一条消息,因此也就不需要锁机制,这也为Kafka的高吞吐率提供了有力保障。

Producer消息路由

(看起来和AMQP有部分类似)
Producer发送消息到broker时,会根据Paritition机制选择将其存储到哪一个Partition。如果Partition机制设置合理,所有消息可以均匀分布到不同的Partition里,这样就实现了负载均衡。如果一个Topic对应一个文件,那这个文件所在的机器I/O将会成为这个Topic的性能瓶颈,而有了Partition后,不同的消息可以并行写入不同broker的不同Partition里,极大的提高了吞吐率。可以在$KAFKA_HOME/config/server.properties中通过配置项num.partitions来指定新建Topic的默认Partition数量,也可在创建Topic时通过参数指定,同时也可以在Topic创建之后通过Kafka提供的工具修改。

在发送一条消息时,可以指定这条消息的keyProducer根据这个key和Partition机制来判断应该将这条消息发送到哪个Parition。Paritition机制可以通过指定Producer的paritition. class这一参数来指定,该class必须实现kafka.producer.Partitioner接口。如果key可以被解析为整数则将对应的整数与Partition总数取余,该消息会被发送到该数对应的Partition。(每个Parition都会有个序号,序号从0开始)

Consumer Group

使用Consumer high level API时,同一Topic的一条消息只能被同一个Consumer Group内的一个Consumer消费,但多个Consumer Group可同时消费这一消息。

这是Kafka用来实现一个Topic消息的广播(发给所有的Consumer)和单播(发给某一个Consumer)的手段。一个Topic可以对应多个Consumer Group。如果需要实现单播,只要每个Consumer有一个独立的Group就可以了。要实现广播只要所有的Consumer在同一个Group里。用Consumer Group还可以将Consumer进行自由的分组而不需要多次发送消息到不同的Topic。

实际上,Kafka的设计理念之一就是同时提供离线处理和实时处理。根据这一特性,可以使用Storm这种实时流处理系统对消息进行实时在线处理,同时使用Hadoop这种批处理系统进行离线处理,还可以同时将数据实时备份到另一个数据中心,只需要保证这三个操作所使用的Consumer属于不同的Consumer Group即可。下图是Kafka在Linkedin的一种简化部署示意图。

传输保障

有这么几种可能的delivery guarantee:

  • At most once 消息可能会丢,但绝不会重复传输
  • At least one 消息绝不会丢,但可能会重复传输
  • Exactly once 每条消息肯定会被传输一次且仅传输一次,很多时候这是用户所想要的

这个问题的引入主要原因有:

  • 网络问题导致未收到消息push确认
  • Pull之后的处理与确认过程中可能crash
  • 其它
Contents
  1. 1. 特点
  2. 2. 术语
    1. 2.1. Broker
    2. 2.2. Topic
    3. 2.3. Partition
    4. 2.4. Producer
    5. 2.5. Consumer
    6. 2.6. Consumer Group
  3. 3. 结构
  4. 4. Topic & Partition
  5. 5. Producer消息路由
  6. 6. Consumer Group
  7. 7. 传输保障